- [行业新闻]想了解ILSI可编程振荡器的型号参数吗?找亿金电子ILSI晶振深圳代理商免费获取2018年07月30日 15:40
- ILSI晶振集团是美国频率控制组件的领导者,为世界各地用户提供高精密,高性能石英晶体振荡器,贴片晶振,石英晶振,晶体滤波器,时钟振荡器等.美国艾西尔晶振致力于为用户提供各种封装尺寸的晶振产品,满足市场需求,并且采用符合国际ROHS环保要求的材料,经过严谨的操作工序进行,早已获得ISO9002,AEC-Q200认证.想了解ILSI可编程振荡器的型号参数吗?找亿金电子ILSI晶振深圳代理商免费获取,下面给大家整理的ILSI可编程振荡器型号一览表.
- 阅读(131)
- [行业新闻]SUNTSU晶振集团符合行业标准封装尺寸的SAW滤波器型号2018年07月17日 11:14
- SUNTSU SAW滤波器采用行业标准封装尺寸,SMT式,体积从3x3mm到19.5x6.5mm均有生产.包括4个引脚和6个引脚,插件式封装.SUNTSU声表面滤波器提供30MHZ~150MHZ的宽中心频率范围,为RF SAW滤波器系列提供100MHZ至2.7GHZ的宽频率范围.IF SAW滤波器的通带带宽为4kHz至40MHz,RF SAW滤波器的带宽带宽为75kHz至80MHz.以下SUNTSU声表面滤波器常用型号列表,更多型号参数欢迎登入亿金官网查看,或来电0755-27876565咨询.
- 阅读(180)
- [行业新闻]美国SUNTSU石英晶体振荡器多种差分输出方式的型号列表2018年07月16日 10:44
- SUNTSU晶体振荡器有通孔或表面贴装包装,有多种尺寸可供选择.包括1612,2016,2520,3225,50032,7050等封装.SUNTSU有源晶振提供宽频率范围和许多不同的电压(1.8V~3.3V)和多种差分输出方式,包括LVDS,CMOS,LV-PECL,HCSL.从下面SUNTSU有源晶振列表中选择一个标准零件号或联系我们的销售团队0755-27876565,以请求您需要的任何自定义参数,我们将根据您的特定需求进行选型推荐.
- 阅读(165)
- [行业新闻]SUNTSU晶振TCXO温度补偿晶体振荡器型号参数一览表2018年07月14日 09:55
- SUNTSU所研发生产的TCXO晶体振荡器和VC-TCXO晶体振荡器有通孔(DIP)或表面贴装(SMD)两种封装模式,并且满足市场需求有多种尺寸可供选择.我们提供许多不同的电压,可以提供符合Stratum 3标准的零件.下面给大家介绍的是SUNTSU晶振TCXO温度补偿晶体振荡器型号参数一览表.从下面列出的数据表中选择一个标准部件号或联系亿金电子的销售团队,以请求您可能需要的任何自定义参数,我们将根据您的特定需求提供最完美的解决方案.
- 阅读(162)
- [行业新闻]不要在一棵树上吊死进口石英晶振灵活选用2018年06月08日 11:03
- 你的产品如果不是定死了,在你急需要用的时候这个晶振品牌刚好没现货,那么我们就可以选择同样知名度高的石英晶振品牌替换使用.在参数一致的情况下,同样的封装尺寸,各个品牌之间晶振型号是可以互相替换使用的,也给自己多一些选择,不管是价格上,交期上都给自己带来了更多便利呢.
- 阅读(123)
- [行业新闻]陶瓷谐振器各项参数的应用说明2018年05月02日 10:20
- 陶瓷谐振器也就是我们常说的陶瓷晶振,石英晶振,石英晶体振荡器与陶瓷晶振相比体积更小,无需调整,起振时间更快速,成本相对更低.下面亿金电子给大家介绍陶瓷谐振器各项参数的应用说明 - 封装:陶瓷谐振器带有标准的单列直插式封装(ZTA,ZTB和ZTT),或者带有内置电容器的3引脚(ZTTS,ZTTCV). - 性质:陶瓷谐振器的振荡取决于与其压电石英晶体结构相关的机械谐振.这些材料(通常是钛酸钡或锆钛酸铅)具有较大的偶极子运动,这通过施加的电场引起晶体的变形或生长. 
- 阅读(260)
- [行业新闻]有关晶振会遇到的问题这里面肯定有你要的答案?2018年04月26日 11:00
- 石英晶振的市场发展前景可观,只要是电子产品就少不了用到晶体元件,尽管晶振产品应用再广泛,在选用一款晶振的时候还是会遇到很多的问题,相信不少晶振销售也遇到过很多这样的情况.下面是亿金电子整理的一些有关晶振会遇到的问题,更多欢迎咨询亿金电子销售部. - 1.压电石英晶体单元指的是什么呢? - 压电石英晶体单元是一种电子元件,用于频率控制、滤波和时钟控制.它由一个装有电极的石英谐振器组成,封装在一个密封的封装中,它提供了与电路的某种连接方式.压电石英晶体单元通常称为“晶体”. - 2.采购一款石英晶振产品需要知道哪些信息呢? - 所需的最小信息是Holder或包、频率和相关(串联谐振,或并联谐振时的负载电容).具体可以咨询亿金电子销售人员0755-27876565. 
- 阅读(127)
- [技术支持]电化区域的大小决定了石英晶振的工作参数2018年04月25日 10:07
- 传统的压电晶体单元(如HC-49/U座的封装)通常使用带有圆形电极的圆形石英谐振板.利用真空下的金属沉积,将电极应用于石英晶振板表面.通过使用覆盖所有板块的面具来确保适当的放置,除了被电的区域.这些面具通常由三部分组成:一个中间部分有一个用来放置盘子的鸟巢,以及为电极提供孔洞的上下部分.当制作这样的面具时,很容易改变决定电极尺寸的光圈;因此,可以将各种各样的电极尺寸应用到特定直径的谐振板上.如上所述,电化区域的大小决定了石英晶体的工作参数,因此可以指定这些参数以适合于特定的应用程序.
- 阅读(109)
- [技术支持]2016晶振对应TXC晶振不同频率参数的原厂料号有哪些?2018年04月07日 10:43
- 2016晶振是目前市场晶振体积较小的尺寸,3225晶振是市场小型智能产品选用最多的一款,随着产品向着便捷式,小型化,多功能发展,2520晶振,2016晶振,1612晶振这样的小体积贴片晶振越来越受欢迎.那么2016晶振对应TXC晶振不同频率参数的原厂料号有哪些?呢?亿金电子针对市场一些常用的晶振频点,选择高精密晶振整理了以下2016石英晶体谐振器编码,供应大家选型参考.
- 阅读(181)
- [技术支持]TXC压控晶振5x7封装BJ-156.250MBE-T晶振编码对应的参数列表2018年04月02日 10:27
- TXC晶振是台湾知名频率元件生产制造商,拥有先进的仪器设备以及生产理念.明白市场所需,与时俱进所生产石英晶振,贴片晶振,石英晶体振荡器具有超小,超薄,精度稳定,低损耗等优势特点. - 台湾TXC晶振中文名称晶技晶振,是国内广大用户指定晶振品牌.TXC生产石英晶振,有源晶振,具有1.8V~5V电压供应不同领域用户选择.TXC石英晶体高超的生产技术,一流的服务,优秀的团队是对客户最有力的保障. 
- 阅读(145)
- [技术支持]电流,频率和Q脉冲宽度与石英晶振微调量之间的关系2018年03月28日 08:58
- 通过调节激光器的三个激光参数,来改变石英晶振频率微调量,从而在不剥落晶振晶片表面电极层的前提下,达到最大频率微调量。三个参数分别为:电流,频率和Q脉冲宽度。 - 电流与石英晶振微调量之间的关系 - 固定频率为5KIHz,Q脉冲宽度为50微秒,改变电流从10安到19安来测频率微调量。 
- 阅读(191)
- [技术支持]通过调节激光器的电流和激光扫描时间实现晶振频率微调2018年03月20日 09:32
- 调节激光器的电流和激光扫描时间到适当的值,是可以实现对石英晶振,贴片晶振进行频率微调的。虽然实验中微调的量最小也是kHz数量级,但从两组数据中可以看出只要电流和扫描时间调节的得当,进行几Hz~几百Hz数量级的频率微调也是可行的,亦即实现晶振ppm级的频率精度。 - 其次,从实现数据中可以看出频率微调量在扫描时间固定的情况下,并不是与激光电流完全成正比;而在激光电流固定的情况下,也不是与扫描时间完全成正比的。这一方面可能与表面银层对于激光的反射作用有关,大量的激光束被银层反射回去,没能用于对表面电极层进行气化,只有通过加大激光电流的办法来加强对表面的轰击。但这样一来很容易造成频率微调量过大,超出了想要的频率微调数量级的现象。 - 另一方面可能与整个石英晶振激光频率微调实验进行的环境有关。整个激光频率微调实验完全在大气环境下进行,受激光扫描而气化的分子受大气中的分子颗粒的散射作用,重新返回晶振晶片表面,堆积在表面其他地方。这样实际上晶振晶片的质量并没有减小,由 Sauerbrey方程: - 可知质量没有改变就不会对石英晶振频率产生微调,因而网络分析仪就测量不出频率的变化。这样实验时就会继续加大激光电流或是增加激光照射或扫描时间。而这样是不对的。因为实际上气化过程在频率真正得到改变前就已经发生了,只是石英晶振晶片总质量没有改变从而不会对频率产生影响。当增强后的激光照射在晶片表面时,有可能电流过大,穿透表面银层,产生与图3.5类似的情形,造成实验失败。 - 此外,从实现数据可以看出,激光扫描电流和激光扫描时间两个参数并不是独立作用的,并不是增加或减少其中的一个就可以直接影响晶振频率微调量的。因而需要两个参数相互配合,在实验的基础上达到一个最佳平衡点。 - 从实验中可以推断,除了激光扫描电流和激光扫描时间两个参数外,还有其它的参数影响着实验结果。如:气压,气温,甚至激光扫描路径。因而需要大量、反复的实验来找出这些关系,进而找到实现精确石英频率微调的最佳方案。 
- 阅读(240)
- [技术支持]针对激光对于石英晶振表面及内部的改变和损伤情况进行研究2018年03月19日 09:01
- 运用不同的工艺方法,对石英晶振进行频率微调,以不同参数的激光产生不同的微调量和微调效果。通过拍摄SEM照片,来研究在不同的激光参数和条件下,激光对于石英晶振表面及内部的改变和损伤情况。共分五种情况对激光刻蚀损伤进行研究。 - 1.直接刻蚀石英晶振片表面。 - 2.以大电流刻蚀石英晶振表面银电极层,使其产生肉眼可见的大面积刻蚀痕迹,至使频率计无法读出刻蚀后的频率值。 - 3.以适当的激光参数刻蚀石英晶振表面银电极层,并无明显的刻蚀痕迹,频率微调量在50ppm,其他电性能参数改变量均小。 - 4.以刻蚀图形的方法对石英晶振表面银电极层进行刻蚀,刻蚀图形为银电极层外层圆环,频率微调量达l000pm。 - 5.以刻蚀图形的方法对石英晶振表面银电极层进行刻蚀,刻蚀图形为银电极层半边圆,频率微调量达2300ppm。 - 以下为石英晶振实验结果分析 - 1.直接刻蚀石英晶振片表面 - 在电流为11A,激光频率为10KHLz,Q脉冲宽度为10s的条件下,直接对石英晶振片进行环状刻蚀。刻蚀示意图如图4.7所示。 - 图中虚线所示为激光刻蚀的轨迹,可见激光全部作用在石英晶振片本身,而不是其表面的银电极层上。经刻蚀,贴片晶振,石英晶振片的频率从10.0268376MHz,上升为10.0268780MHz,频率微调量为404pm。这样做的目的,是为了观察当激光直接作用于晶片本身的时候,会对晶片产生怎样的影响。 - 通过电镜观察,刻蚀后的石英晶振片断面如图4.8所示。 - 从图中可见,被激光刻蚀后的区域,石英片表面平整,形貌良好,并未对下面石英晶体产生损伤。部分晶体被激光刻蚀掉后由于大气中分子的散射作用,重新落回到晶片表面,覆盖在原晶片上。 - 2.以大电流刻蚀贴片晶振,石英晶振表面银电极层,使其产生肉眼可见的大面积刻蚀痕迹,至使频率计无法读出刻蚀后的频率值。 - 在电流为14A,激光频率为10KHz,Q脉冲宽度为10ys的条件下,对石英晶振片表面银电极层进行刻蚀。刻蚀图形及示意图分别如图4.9、4.10所示。   - 在14A的激光电流刻蚀下,晶片表面刻蚀区域的电极层被损坏,出现了肉眼可见的较大范围内明显剥落痕迹。至使频率计无法读出其谐振频率,石英晶片停振。 - 通过电镜观察,刻蚀后的石英晶振片断面如图4.11所示。 - 如图所示,图中左半边银电极层清晰可见,均匀的覆盖在石英表面。而右半边银电极层被激光刻蚀剥落,被剥落处银电极层与贴片晶振,石英晶振混在一起,界线模糊。并且剥落已经损伤到石英晶振本身。损伤延伸至2000m深度。 
- 阅读(258)
- [技术支持]利用石英晶振作为微力传感器的原理进行分析讲解2018年03月09日 09:05
- 晶振是为电路提供基准频率信号源的一种频率元件,在前面的文章中亿金电子有提到过关于石英晶振晶片的选择,晶振刻蚀的影响,晶振片的生产材料等信息,那么下面要给大家说的是利用石英晶振作为微力传感器的分析讲解. - 在非接触测量模式中,微悬臂是要靠压电驱动器进行AC驱动来做小幅的振动,随着其进一步的发展,人们把目光开始转向压电材料,当石英等材料受到应变时会产生电荷,而当在这些材料上施加电场时,其几何尺寸就会发生变化,这种现象被称为压电效应I18。1990年IBM公司GrutterP等提出了可以将微悬臂粘附在双晶片之间以产生稳定性很好的高频振荡信号,从而对由于力梯度的作用下悬臂的形变信号进行频率调制,通过解调就可以获得表面形貌,研究显示了在固定带宽的情况下,灵敏度可提高2倍以上。 - 1991年TR.Albrech等采用在片层压电材料表面刻蚀出针尖来取代传统的用si材料做成的微悬臂201。由于压电材料能将机械振动特性的变化直接转化为电荷变化,因此不需要激光测微仪,但用其制作的微悬臂品质因数Q值(约200)较低,使得分辨率有待提高,而且在片层压电材料表面刻蚀出针尖的成本太高。因此必须使用一种高品质因数的压电材料的传感器以提高信噪比。 - 使用针式传感器的想法在1988年就产生了,当时因为测量集成电路的需要,研究人员曾经试图模仿传统的轮廓仪,将一个针尖制作成圆弧半径可达nm级,这样就可以突破一些物理极限,如光的波长,以获得大约相当于光波长的百分之一的测量精度。但是这需要解决两个问题:针尖的制备和测量相互作用力。1988年,P.Gunther等人探讨了使用石英音叉晶振作为传感器的可能性,将音叉的一个角作为针尖逼近样品表面,音叉的幅值和频率会随着逼近距离的变化而变化,证明了使用石英晶振作为传感器,是一个很有希望的发展方向。1993年,K.BARTZKE等研制出了第一台这样的针式传感器并将它用于AFM的测量中,其针尖的制备使用了机械蚀刻金刚石的方法为了检测针尖和样品之间的接触,针尖被固定在一个高灵敏度的1MHEZ杆状晶振上,晶振的谐振参数的变化可以被相应的电路检测出来。 - 1995年, A Michels等报道了将晶振作为扫描近场声显微镜的探针的研究。将1MHZ杆状晶振的尖角作为针尖以45°角与样品逼近,将晶振受到的阻尼信号作为测量距离的信号得到物体表面的形貌图。其垂直分辨率达到了50nm,水平分辨率达到了200nm,是介于传统的轮廓仪和SFM之间的一种仪器24。随着研究的进一步深入,研究者开始探讨将针式传感器作为其他类型显微镜的应用。M. Todorovic等在1998年报道了一种使用音叉作为传感器的磁力显微镜。在石英音叉的一支脚上粘附一个经过磁化的非常细小的针尖,即可构成磁力传感器。石英音叉晶振的脚只有2mm长,200um厚,100um宽,弹性常数只有200N/m,只有传统的AFM仪器的十分之-。针尖是电化学腐蚀镍丝的方法制作的,针尖的安装保证了音叉的弹性常数和Q值不发生大的变化。 - 国内这一领域的工作开展的比较晚,1997年,计量科学研究院与西德的合作项目中首次使用了这一技术,之后我们实验室也在这一领域进行了跟踪研究,并获得了初步的结果。 - 从上述发展历程可以看出,使用贴片晶振,石英晶振作为针式传感器,到目前其测试精度并没有达到很高,但是由于其成本低廉,易于获得,性能稳定,在测试方法上具有独到的优势,因此是一个很有前途的发展方向,随着研究的进一步深入,它的测量精度有可能进一步提高,这对于工业界和实验室来说,是一个性价比很高的测量仪器,对于科学试验和工业应用都具有很大的价值。 
- 阅读(138)
- [技术支持]石英晶振参数的变化可以被相应的电路检测出来2018年03月05日 09:20
- 石英晶振是一种频率元件,为电路提供基准信号频率。随着智能科技的发展,晶振的发展脚步也在不断加快。关于晶振的作用和晶振分类,以及石英晶振在不同产品中的应用原理大家可以到前面的文章中查看。下面亿金电子要给大家介绍的是石英晶振参数的变化可以被相应的电路检测出来,因此我们做了以下分析。 - 1995年, A Michels等报道了将晶振作为扫描近场声显微镜的探针的研究。将1MHZ杆状晶振的尖角作为针尖以45°角与样品逼近,将石英晶振受到的阻尼信号作为测量距离的信号得到物体表面的形貌图。其垂直分辨率达到了50nm,水平分辨率达到了200nm,是介于传统的轮廓仪和SFM之间的一种仪器24。 - 随着研究的进一步深入,研究者开始探讨将针式传感器作为其他类型显微镜的应用。M. Todorovic等在1998年报道了一种使用音叉作为传感器的磁力显微镜。在音叉表晶的一支脚上粘附一个经过磁化的非常细小的针尖,即可构成磁力传感器。石英音叉的脚只有2mm长,200um厚,100um宽,弹性常数只有200N/m,只有传统的AFM仪器的十分之-。针尖是电化学腐蚀镍丝的方法制作的,针尖的安装保证了音叉的弹性常数和Q值不发生大的变化。 - 国内这一领域的工作开展的比较晚,1997年,计量科学研究院与西德的合作项目中首次使用了这一技术,之后我们实验室也在这一领域进行了跟踪研究,并获得了初步的结果。 - 从上述发展历程可以看出,使用石英晶振,贴片晶振作为针式传感器,到目前其测试精度并没有达到很高,但是由于其成本低廉,易于获得,性能稳定,在测试方法上具有独到的优势,因此是一个很有前途的发展方向,随着研究的进一步深入,它的测量精度有可能进一步提高,这对于工业界和实验室来说,是一个性价比很高的测量仪器,对于科学试验和工业应用都具有很大的价值。 - 从上述可知,现有的基于微悬臂的扫描磁力显微镜存在种种不足。鉴于此, 本文想研制出一种采用新型传感器的结构紧凑的扫描磁力显微装置,以达到高的测量稳定性、准确性和具有纳米尺度的测量分辨率。由此,该仪器的研究成功,可在下面几个方面起到促进作用。 - 首先它可用于磁记录工业中的质量检验控制中。例如对光盘制造进行超微观检测。另外对磁记录位的大小及分布等进行高分辨率的检测。再次,可用于对生物样品磁触觉细菌内亚微米磁畴颗粒进行直接观察及对单个细菌细胞内磁矩的定量研究。 
- 阅读(157)
- [技术支持]石英晶振在经过离子刻蚀加工后的瞬间频率偏移分析以及解决方案2018年03月03日 11:02
- 采用离子刻蚀进行晶振频率微调,在刻蚀后晶振的频率会发生偏移。这会使频率调整精度低于真空蒸着频率调整法。如图4-4所示,离子刻蚀后石英晶振频率会产生偏移,纵轴表示与目标频率的偏差,单位是pm。在刻蚀前,石英晶振的频率相对于目标频率是负的。在调整时,一边用测频系统测定石英晶振的频率,一边用离子束照射石英晶振的电极膜, 电极膜被刻蚀,频率随之升高。当刻蚀停止后,会出现频率下降的现象。刻蚀刚停止的几秒内,频率下降较快,随后下降会渐渐变缓,最后趋于稳定,不再变化。这种离子刻蚀后频率偏移的原因比较复杂,其原因之一是因为离子刻蚀时对晶振晶片产生的热应力。其理论依据比较深奥,在此不做讨论。本文主要通过实验,找出频率偏移的规律,对石英晶振进行离子刻蚀加工时设定合适的参数,使得这种偏移在实际应用中产生尽可能小的影响。   - 现在用AT方向切割的石英晶片做成的石英晶振进行实验,用离子束对晶片进行刻蚀,统计出蚀刻速度与频率偏移的联系。 - 实验对象:A品种的石英晶振使用的晶片是长方形,尺寸为长1996u±3u,宽1276u±2a,晶片厚度为62.04u。目标频率为26.998380MHz。晶片先用昭和真空生产的磁控溅射镀膜机SPH-2500进行镀膜,为了提高镀层密着性,先镀少量的铬膜, 然后按频率要求镀银膜,总膜厚约为1.73u。使得在离子束刻蚀加工前的频率与目标频率的差为2000ppm~300ppm之间。 - 实验设备:离子束刻蚀频率微调机使用昭和真空生产的SFE-6430T。离子枪的加速钼片到晶片表面的距离为25mm,氩气流量为0.35SCCM。 - 首先,进行较大刻蚀速度对石英晶振,贴片晶振进行刻蚀的实验,测得偏移量。如表4和图4÷5所示当刻蚀速度在1000ppm/s到2000ppm/s的范围,离子刻蚀后的偏移量随着刻蚀速度的增加而有很大的升高。如当刻蚀量为2000ppm时,频率偏移量山刻蚀速度为1000ppm/s的35.8ppm快速增长到刻蚀速度为2000ppm/s的89.8ppm。当刻蚀量为3000ppm时,频率偏移量便会超过100pm。此外,从图4-5中可以看出,在同一刻蚀速度下,刻蚀后的频率偏移量还会随刻蚀量的增加呈线性升高。   - 其次,进行较低刻蚀速度对石英晶体,石英晶体谐振器进行刻蚀的实验,测得偏移量。如表4-2和图4-6所示,与高速时的情况类似,刻蚀速度增加时,刻蚀后的偏移量也会随之增加。并且,在同一刻蚀速度时,刻蚀后的偏移量也随刻蚀量的增加而线性增大。从图表中可以看出,刻蚀速度减小后,刻蚀后的偏移量也会减小很多。当刻蚀速度减小到80ppm/s时,刻蚀量为200pm时,刻蚀后偏移量仅为2.5pm。如果进一步控制刻蚀量,当刻蚀量降到100ppm时,刻蚀后偏移量仅为0.2ppm,基本接近于0。因此在实际生产时,如果能将刻蚀速度控制到80pm/s,刻蚀量控制在100pm以下, 晶振的离子束刻蚀后的频率偏差较大,且公差范围较小,为了减少离子束刻蚀后频率偏移产生的影响,提高产品的精度,可以采用3段加工模式,但是生产效率会有所降低)。   - 晶振离子刻蚀两段加工模式如图4-7所示,首先进行H段加工,用高的刻蚀速度和大的刻蚀量,从加工前频率开始加工,等加工到设定的中间目标频率后停止刻蚀,一段时间后,由于离子刻蚀后的晶振频率偏移的影响,使频率下降,回到L段加工前频率。接着进行L段加工,用低刻蚀速度和小刻蚀量,从L段加工前频率开始加工,等加工到设定的最终目标频率后停止刻蚀,一段时间后,出于离子刻蚀后频率偏移的影响, 使频率下降,回到实际最终频率,当实际最终频率在公差范围内就为良品,加工就结束。如果实际最终频率低于公差范围可以作为F-不良重新加工一次。如果实际最终频率大于公差范围,则只能作为F+不良而报废。 - 而在实际生产过程中,由于操作员缺乏相关理论知识,不能精确的对加工参数进行设定。使得加工的产品会因为刻蚀速度过快,产生较大的频率偏移,或直接产生F+。而刻蚀速度太低不仅会降低加工的效率,当时间超过设备的监控时间后,就会直接出现F-不良。 - 例如,在实际应用中,因为操作员没有系统的理解以上理论知识,当A品种的石英晶振在进行离子刻蚀微调时,发现频率分布整体偏低,接近20ppm。因为担心现F-不良,希望将整体颏率调鬲。此时应该确认是否是因为H段加工时的速度太慢, 导致L段加工前的频率过低。使得在进行L段加工时,时间过长,超过了设备的监控时间,而强制停止L段加工。 - 而操作员没有经过确认就主观的将最终日标频率调高, 发现频率略有上升,但仍然偏低。就调高L段的刻蚀速度,刚开始有一定效果,但是没有达到理想状态,就继续调高L段刻蚀速度,此时不但没有效果,反而因为速度太高,刻蚀后的频率偏移使得频率有略微的下降。并且出现因刻蚀速度的太高而产生的F+不良(如图4-8)。因为没有专业技术继续调整,并且认为不良品数量不多,为了赶快完成当日产量,就继续加工制品。此时,因为H段的刻蚀速度低,影响加工效率, 并由于F+的出现,增加了产品的不良数。 - 图4-8各参数设置不良时离子刻蚀后频率偏移的频率分布表 - 为了解决这一问题,本文通过前几节的知识和实验数据,制定标准的参数。首先将最终晶振频率设定在0pm。然后为了将L段加工的频率偏移尽可能减少,就将L段的刻蚀速度设定为80ppm/s。为了控制L段的刻蚀量在100pm左右,将中间目标频率设定在-45pm,H段加工速度设定为1600ppm/s,这是H段加工后的结果在50ppm~-0ppm之间,加上刻蚀后的频率偏移使得L段加工的刻蚀量在-100pm120ppm之间。 - 按这样的设定既可以保证L段加工的效率,也可以控制L段加工后的频率偏移。使得最终实际频率以晶振频率为中心分布。将上述方法设定的参数作成作业标准书如图4-9所示,让作业员遵照执行。图4-10是按此作业标准操作,对制品加L后的频率分布。山图中可以看出频率是以日标频率为中心分布的,并且分布比以前集中,也没有不良出现。因此,本论文提出的方法可以提高产品的合格率。 
- 阅读(227)
- [技术支持]晶振离子刻蚀频率微调技术及生产工艺报告2018年02月28日 08:58
- 晶振离子刻蚀频率微调技术及生产工艺报告 - 1.频率微调方法 - 石英晶振的频率是由石英晶振晶片的厚度以及电极膜的厚度决定的,为此,当调整此厚度就可以调整石英晶振的频率。石英晶振的制作过程是先将石英晶片从石英晶体上按一定角度切下,然后按一定尺寸进行研磨,接着在晶片两面涂覆金属电极层,此时与目标频率相差2000ppm~3000p0m,每个电极层与管脚相连与周围的电子元器件组成振荡电路,随后进行频率微调,使其与目标频率的差可以减少到2ppm以下。最后加上封装外壳就完成了。 - 石英晶振的频率微调是对每个石英晶振边测频率,边调整电极膜的厚度。使频率改变,达到或接近目标频率。电极膜厚的调整方法主要有两种,真空蒸着法和离子束刻蚀法。 - 真空蒸着法是在石英晶振晶片的电极膜上用加热蒸着的办法继续增加电极膜的厚度, 达到调整频率的目的。这种方法结构简单,易于控制。缺点是在石英晶振晶片表面产生多层电极膜,并且密着度会变差,当石英晶振小型化时,会使原来的电极膜和调整膜的位置发生偏移,使石英晶振的电气性能降低。 - 离子刻蚀频率微调法,是用离子束将电极膜打簿,调整石英晶振的频率。因此,不会产生多层电极膜,也不会有电极膜和调整膜的位置偏移,石英晶振的电气性能也不会降低。 - 2.离子刻蚀频率微调方法 - 图4-1是基于离子刻蚀技术的频率微调示意图,离子刻蚀频率微调方法,当照射面积小于2~3mm2,在beam电压低于100V以下就可获得接近10mA/cm2的高电流密度的离子束,离子束的刻蚀速度在宽范围內可进行调节。图中采用的是小型热阴极PIG型离子枪,放电气体使用Ar,流量很小只需035cc/min。在:圆筒状的阳极周围安装永久磁石,使得在轴方向加上了磁场这样的磁控管就变成了离子透镜, 可以对离子束进行聚焦。 - 热阴极磁控管放电后得到的高密度等离子,在遮蔽钼片和加速钼片之间加高达1200V高压后被引出。并且可以通过对热阴极的控制调整等离子的速度。用离子束照射石英晶振,石英晶体的电极膜,通过溅射刻蚀使得频率上升米进行频率微调。在调整时,通过π回路使用网络分析仪对石英贴片晶振的频率进行监控,当达到目标频率后就停止刻蚀,调整结束。 - 因为石英晶振与π回路之间用电容连接,离子束的正电荷无法流到GND而积聚在石英晶片上,使石英晶片带正电荷。其结果不仅会使频率微调速度降低,而且使石英晶片不发振,无法对石英晶振的频率进行监控和调整。为此,必须采用中和器对石英晶片上的正电荷进行中和。 - 在进行离子刻蚀频率调整时,离子束对一个制品进行刻蚀所需的时间为1~2秒, 而等待的时间约2秒,等待时间包括对制品的搬送和频率的测量时间。在等待时间中, 是将挡板关闭的。如果在这段时间内,离子枪继续有离子束引出,则0.5mm厚的不锈钢挡板将很快被穿孔而报废。为此,在等待时间内,必须停止离子枪的离子束引出。 - 可以用高压继电器切断离子枪的各电源,除保留离子枪的放电电源(可维持离子枪的放电稳定)。这样,在等待时间没有离子束的刻蚀,使挡板的使用寿命大大增长。同是,出于高压继电器的动作速度很快,动作时间比机械式挡板的动作时间少很多,所以调整精度也可得到提高。 - 3.离子束电流密度 - 在图4-1中,为了提高操作性,简化自动化过程中的参数设定,只对beam电压和放电电流进行控制,而放电电压和Ar流量保持不变,加速电压取beam电压的20%。 - 图4-2表示的是在不同的beam电压下,随着放电电流的变化,石英晶振的电极膜处(与离子枪加速钼片的距离为25mm)所测得的电流密度。从图中可以知道,对于不同的beam电压,放电电流变化时,都有相对应的放电电流使得电流密度达到最大。本文说所的晶振离子刻蚀频率微调就是采用了各不同beam电压时的最大电流密度进行的。当设定好调整速度后,根据计算决定beam电压,然后根据该电压下最大的电流密度计算出放电电流。 - 4.离子刻蚀频率微调加工工艺 - 晶振离子刻蚀频率微调加工工艺与真空蒸着频率微调有相似处也有不同处。首先,两种频率微调方法都必须在高真空环境下进行,因此在加工前都必须确认真空腔的真空度是否达到要求,一般都要求在1×103Pa以上。其次还必须确认真空腔的水冷设备没有漏水现象,使用的真空泵需要用真空油时还要确认真空腔内没有被油污染。接着还要保证石英晶振,石英晶体谐振器上没有灰尘或脏污等异物附着,为了有效的控制异物,加工环境最好是5000级以下的净化空间。离子刻蚀频率微调加工除了要注意以上要求外,还必须注意到离子刻蚀后数秒内频率的偏移问题,这个问题将直接影响到生产效率和合格率。 
- 阅读(428)
- [技术支持]在产品中作为测量元件时石英晶振的重要性能参数2018年02月24日 17:35
- 晶振作为测量元件时的重要性能参数 - 石英晶振本身具有很多性能参数,除了前面所提及的串联谐振频率、并联谐振频率外,还有制造公差、拐点温度等,已经有很多文献对此作了论述但对于测量来说,选用石英晶体的重要原因是因为它的高频稳定性和极小的振幅。所以本文只对晶体的品质因数、频率一电流特性、频率一温度特性进行了论述。 - 晶体的品质因数Q是晶体的最重要参数。在一定程度上,当其他条件相同时,Q值越高晶体振荡器的频率稳定度越高,石英晶振晶体的品质因数Q是由晶体的动态参数决定的,即: - 其中ω为测试系数。 - 晶振的品质因数通常不作规定,对于标准部件,Q值通常在20000-200000之间,精密晶体可高达5×10°,这比传统的微悬臂的Q值要高100-1000倍。 - 石英晶体谐振器的频率一电流特性,就是激励电平和谐振频率的关系,它是由石英晶振的物理特性决定的。激励电平通常以晶振的耗散的功率、流过晶振的电流以及晶振两端的电压来量度,晶振电流的变化使其串联谐振频率发生交化。石英晶振的谐振频率相对变化与晶振电流的关系,可以用下面的近似关系表示: - 其中D是振的电流常数 - 从上述关系式可以看出,当激励电平增大时,产生了以下影响:(1)频率产生了漂移,长期稳定性变坏。石英晶振晶振的弹性常数发生了变化,因此引起了频率的漂移,随着晶振的激励电流增高,晶振的频率稳定性显著下降。(2)晶振温度增加。当晶振的激励电平过高时,使得石英贴片晶振被加热到热平衡的温度也引起了频率变化。(3)产生了寄生振荡。(4)等效电阻加大。内部分子运动加剧,使得等效电阻加大,Q值下降。 - 在实际测量中,当激励电流过大时,石英贴片晶振振荡的幅值过大,导致测量的精度下降,同时不易控制样品表面与针尖之间的距离,所以一般不能采用较高的激励电流。但是激励电平也不能过小,否则由于噪声电平的限制,使瞬态稳定性变坏,这样获得的图像质量就比较差。 - 晶振的另外一个值得注意的参数是晶振的频率一温度特性,所谓晶振的频率一温度特性就是石英晶振的谐振器的频率随温度变化而变化的特性。晶振的工作温度变化时,晶格变形,从而使得其串联谐振电路发生变化。石英晶体谐振器在温度较窄的范围中,具有较小的温度系数,这就是说频率受温度的变化的影响比较小。但随着温度变得较低(<50°C)和变得较大时(>80°C)时,石英谐振器的频率随着温度的变化有较大的变化。在国外的文献中已经有报道将晶振放在真空、低温、强磁场的环境下进行测量,这时晶振的频率将与常温时有 - 明显的不同,而且石英晶体谐振器切型不同,晶振频率的变化方向也不同,所以在实验室应该对测试温度和环境加以控制。同时由于测试环境的变化,如何保持仪器的稳定性, 也是一个值得注意的问题。 - 亿金电子从事石英晶体行业十几年,多年来诚信经营,精益求精,为广大用户提供小尺寸,高精度,低价格晶振产品,并且免费提供晶振技术资料下载.亿金电子晶振厂家同时代理日本台湾欧美进口晶振品牌,KDS晶振,爱普生精工晶体,京瓷贴片晶振,TXC晶体,CTS晶振,IDT晶振,鸿星石英晶振,(SPXO晶振)普通晶体振荡器,(TCXO晶振)温补晶体振荡器,(OCXO晶振)恒温晶体振荡器等.亿金电子为品胜,奇瑞汽车,联想电脑,中兴华为等国内多家知名企业频率部件指定供应商,产品广泛用于航空,家居,机械,安防,电子,网络,通信等各种领域. 
- 阅读(228)
- [技术支持]石英晶振作为微力传感器来取代传统的微悬臂和位移检测装置2018年02月06日 09:28
- 石英晶振主要用在电路中作稳频元件。为了克服传统的扫描探针显微镜在应用中的不足,本文采用石英晶振作为微力传感器来取代传统的微悬臂和位移检测装置。而石英晶振有两个优点: - 1、压电效应,从而使石英晶振免去了中间转化环节,形成一个独立的直接和即时的微力测量单元。 - 2、空气中极高的品质因素,从而使最小可测力梯度减小,传感器的灵敏度提高。 - 2.1晶振作为测量元件的物理特性研究 - 石英晶体是六棱柱而两端呈角锥形的结晶体,其化学成分是Si02,下图所示是石英晶振晶体的坐标轴系: - 通常将通过两顶端的轴线称为光轴(Z轴),与光轴垂直又通过晶体切面的六个角的三条轴线称为电轴(X轴),与光轴垂直又和石英晶振晶体横切面六边形的六个边垂直的三条轴线称为机械轴(Y轴),X轴、Y轴、Z轴统称为晶体的坐标轴系。在同一方向上,石英晶振晶体的性质是完全相同的。 - 石英晶体是一种各向异性的晶体,它具有正压电效应。沿某一机械轴或者电轴施加压力,则在垂直于这些轴的两个表面上就产生了异号电荷,其值与机械压力产生的机械形变成正比,若施以张力,则表面上的电荷与受压时的符号相反。造成这种结果的原因是贴片晶振,石英晶振晶体的晶格在压力下变形,导致电荷分布不均匀。石英晶体还具有逆压电效应,如果在石英晶体两个面之间加一电场,则晶体在电轴或机械轴方向上就会延伸或压缩,延伸或压缩量与电场强度成正比。 - 如果将石英晶体置于交变电场中,则在电场的作用下,贴片晶振晶体的体积会发生周期性的压缩或拉伸的变化,这样就形成了晶体的机械振动,晶体的振动频率应等于交变电场的频率,在电路中也就是驱动电源的频率。当石英晶体谐振器振动时,在它的两表面产生交变电荷,结果在电路中出现了交变电流,这样压电效应使得晶体具有了导电性,可以视之为一个电路元件。石英晶振晶体本身还具有固有振动频率,此振动频率决定于晶体的几何尺寸、密度、弹性和泛音次数,当石英晶振晶体,有源晶振的固有振动频率和加于其上的交变电场的频率相同时,晶体就会发生谐振,此时振动的幅值最大,同时压电效应在石英晶振晶体表面产生的电荷数量和压电电导性也达最大,这样石英晶体谐振器,石英晶振晶体的机械振动与外面的电场形成电压谐振,这就是石英晶体作为振荡器的理论基础。 - 石英晶体的电气特性可用图中所示的等效电路图来表示,由等效电阻R1、等效电感L1和等效电容C1组成的串联谐振回路和静态电容Co并联组成,静态电容C0主要由贴片晶振,有源晶振,石英晶体的尺寸与电极确定,再加上支架电容组成。等效电感L1和等效电容C1由切型、石英晶体片和电极的尺寸形状来确定。等效电阻R1是决定石英晶振Q的主要因素,是直接影响石英晶体谐振器工作效果的一个重要参数。R1不仅由切型、石英晶体片形状、尺寸、电极决定,而且加工条件、装架方法等对其影响也很大。因此,同一型号,同一频率的若干产品其Q值也相差很大。 - 在等效电路中,L1和C1组成串联谐振电路,谐振频率为:   - 通常石英晶体谐振器的阻抗频率特性可用图2.3表示。此处忽略了等效电阻R1的影响,由图可见,当工作频率f - 时,晶体呈容性;当工作频率在f0与f之间时,晶体呈感性;当工作频率f>f时,晶体又呈容性。晶体在晶体振荡器主振荡级的振荡电路呈现感性,即工作频率在f于f之间。 
- 阅读(159)
- [技术支持]OCXO恒温晶振的老化率以及频率温度特性2018年02月05日 09:42
- 恒温晶振(OCXO)介绍 - 恒温晶体振荡器OCXO( Oven Controlled Crystal Oscillator),是目前频率稳定度和精确度最高的石英晶体振荡器。它在老化率、温度稳定性、长期稳定度和短期稳定度等方面的性能都非常好,作为精密的时频信号源被广泛用于全球定位系统通信、计量、频谱及网络分析仪等电子仪器中。目前,绝大多数高稳定度石英晶体振荡器都采用了将晶体恒温的方法,使用精密的恒温控制槽,将槽内温度调节到晶体谐振器的零温度系数点上。这样,能最大限度地克服温度对晶体振荡器频率的影响,被广泛用作标准频率源。恒温晶体振荡器包括以下几个基本组成部分。 - 1.高精密的石英谐振器 - 石英诸振器是振荡电路的核心元件。正确选择切角是制作频率温度系数好的石英谐振器的必要条件,特别是在宽温度范围内使用的石英晶体谐振器更是如此。目前恒温晶体振荡器中常用的石英谐振器有AT切和SC切两种。它们具有频率温度系数小,Q值高,老化效应小等特点。 - 2.稳定的振荡电路 - 由于恒温晶体振荡器要求频率稳定度高,除了在控温电路方面要达到一定的控温精度外,振荡电路本身稳定性也是起决定性作用的。恒温晶体振荡器中振荡电路的基本功能就是把直流电能转变成具有一定频率、幅度且频率高度稳定的交流电能,这种转换是在石英谐振器的参与下进行的。其中最突出的问题就是频率的稳定性。所以分析、设计振荡电路都以此为前提。 - 3.结构完善、温控良好的精密恒温箱 - 精密恒温箱是由恒温槽,温度控制电路及其它辅助装置组成的恒温系统。在晶体振荡器中,用来使石英谐振器和有关电路元件保持恒温。其作用是把石英晶振,石英谐振器的温度稳定在石英谐振器的拐点温度处,从而充分发挥拐点温度附近石英谐振器的频率温度系数小的特性,使其得到合理使用。设计一个符合要求的恒温槽和选择一个性能良好的温度控制电路对稳定频率起着举足轻重的作用。因此一个高稳定的晶体振荡器,不但应具有稳定的振荡电路,而且还必须有性能良好的恒温箱来保证其频率的稳定,两者缺一不可。随着对晶体振荡器稳定度要求的逐步提高,对恒温箱的控温精度要求也越来越高,目前,频率稳定度在100~10量级的晶体振荡器,其恒温箱的温度控制精度应在0.001℃以内。 - 随着通信技术的不断提高,对恒温晶振的要求越来越高,使其不断向着高精度与高稳定化,低噪声与高频化、低功耗、快启动、小型化方向发展。 - 晶振的相关数学定义 - 假设晶振输出信号为正弦波,其数学模型可以表示为: - 式中VO为标称峰值输出电压,§(t)为幅度偏移,φ(t)为相位偏差,fr为标称频率。 - 瞬时频率为:   - 相对频率偏移为:   - 式中x(t)=  为时间偏差,由式(2-7)可以得到: 为时间偏差,由式(2-7)可以得到:- 瞬时频率的常用公式为:   - 式中f(t)为t时刻的瞬时频率值,fO为t=0时刻的频率值,fr为标称频率,D(t)为频率漂移率。 - 由式(2-7)和(2-9)可推导出:   - 式中,y为初始相对频率偏差。 - 由式(2-8)和(2-10)可以得到:   - 式中,x为初始时间偏差,也叫做同步误差。 - 一般性能比较好的石英晶振,日老化率近似为常数,特别是对于OCXO晶振,在频率保持模式下,我们只考虑老化对实际频率的影响。很多晶振的老化指标用的是年老化率,如±0.05ppm( Part per Million),一般情况下我们可以近似得出日老化率, 大概为年老化率的百分之一。 - 假设晶振老化率为常数,式(210)变为:   - 其中当|Bt|<<1时,有ln(Bt+1)→Br,式(2-17)变为式(2-12)的形式: - y(t)=C+ ABt 式(2-18) - 图2.4给出了典型的老化率数学模型。可以看出石英晶振的老化率可以为正数可以为负数,也可能会产生图中曲线y3(t)的情况。图2.5为铷原子频标的老化曲线,由于测试曲线的后半段存在参考和被测之间因漂移方向相同的现象,从而导致漂移问题不是很明显。   - 式中,do、d为正数,参数aj(n),j=1,2,…,M由当前数据输入和上次数据输出迭代估计得到,价值函数为   - 通过最小化价值函数,可以得到参数a,(n),j=1,2,…,M,得到t(n)时刻的ao a1…aM后,t(n+l)时刻的相对频率偏差预测值为: - 系列实验表明,估计性能对d0、d和M的取值不是很敏感,建议取值为d=1~05d(M-1),d=0.1~1.0,M=5~10。加权对数函数模型的缺点是计算比较复杂。 - 2.2.4晶振的频率温度特性 - 除过老化的影响,温度也是影响频率变化的主要因素,而不同切型的晶体的频率一温度特性是不一样的,一般AT切基频晶体的频率一温度变化关系都是三次曲线,存在若干个零温度系数点,如图2.6所示。   - 因此对其进行温度补偿时要采用具有非线性函数拟合能力的数学模型。然而由于OCXO恒温晶振中一般采用SC切晶体,虽然其频率一温度变化曲线也是非线性的, 但是其频率一温度稳定度在宽温度范围内较AT切晶体有很大改善,并且由于它将石英晶体、振荡电路以及部分其它线路置于精密恒温槽中,恒温槽的工作温度选择在所用晶体的零温度系数点处,因此OCXO恒温晶振的频率温度系数非常小。当恒温槽的工作温度波动被控制在很小范围内时,如优于百分之一摄氏度时,其频率温度变化也可以被限制在很小的范围内,而且正是由于这种恒温作用,其频率温度变化曲线非常接近于线性。所以对OCXO恒温晶振的频率温度变化的预测可以采用线性数学模型, 而Kalman滤波算法正是一种较好的线性模型估计器,因此用它来拟合OCXO恒温晶振的频率温度特性曲线是合适的。 
- 阅读(1576)
相关搜索
亿金热点聚焦
 - 关于无源晶振有源晶振不同之处的分析报告 
- 1CVCO55CW-3500-4500非常适合卫星通信系统应用 
- 2节能单片机专用音叉晶体ABS07-120-32.768KHZ-T
- 3可编程晶振CPPC7L-A7BR-28.63636TS适用于驱动模数转换器
- 4汽车氛围灯控制器晶振E1SJA18-28.63636M TR
- 5京瓷陶瓷晶振原厂编码曝光CX3225GB16000D0HPQCC适合于数字家电
- 6SMD-49晶振1AJ240006AEA专用于车载控制器应用
- 7ECS-3225MV-250-BN-TR晶体振荡器是LoRa WAN的理想选择
- 8ECS-TXO-20CSMV-260-AY-TR非常适合稳定性至关重要的便携式无线应用
- 9LVDS振荡器ECX-L33CN-125.000-TR提供频率可配置性及多种包装尺寸
- 10ECS-240-18-33-JEN-TR3非常适合电路板空间至关重要的应用

 全球咨询热线
全球咨询热线 手机端
手机端 
				



















 亿金公众号
亿金公众号 亿金微信号
亿金微信号


