

#### **DESCRIPTION**

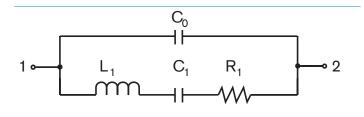
Designed and manufactured in the USA, the CX9V quartz crystal is available in frequencies from 32 kHz to 250 kHz. Using micro-machining processes, this surface-mountable crystal is hermetically sealed within a ultra-miniature ceramic package to ensure high stability and low aging. Tight calibration and custom laser tuning make the CX9V ideally suited for all low frequency applications.

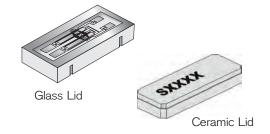
#### **FEATURES**

- Ultra-miniature, surface mount design (4.1mm x 1.5mm)
- Low profile (typically 0.80mm)
- Available with glass or ceramic lid
- Hermetically sealed ceramic package
- High shock and vibration survival
- Excellent aging characteristics
- Designed for low power applications
- Full military testing available
- Designed and manufactured in the USA

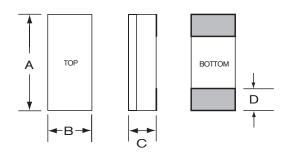
## APPLICATIONS

## Medical


- Pacemaker, defibrillator, and other implantables
- Medical instruments


Industrial, Computer, & Communications

- Smart card
- Down hole instrumentation
- Transponder / Animal migration
- Process instrumentation

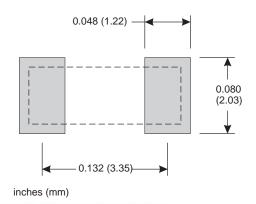

Military & Aerospace

- Airborne hybrid
- Navigational computer
- Real time clock





## PACKAGE DIMENSIONS




|     | TYP.   |      | MAX.      |      |  |
|-----|--------|------|-----------|------|--|
| DIM | inches | mm   | inches    | mm   |  |
| А   | 0.160  | 4.10 | 0.170     | 4.32 |  |
| В   | 0.060  | 1.50 | 0.068     | 1.73 |  |
| С   | -      | -    | see below |      |  |
| D   | 0.031  | 0.79 | 0.038     | 0.97 |  |
|     |        |      |           |      |  |

## THICKNESS (DIM C) MAXIMUM

|         | GLASS LID |      | CERAMIC LID |      |  |
|---------|-----------|------|-------------|------|--|
| MAX     | inches    | mm   | inches      | mm   |  |
| SM1     | 0.034     | 0.87 | 0.035       | 0.90 |  |
| SM2/SM4 | 0.034     | 0.87 | 0.035       | 0.90 |  |
| SM3/SM5 | 0.036     | 0.91 | 0.037       | 0.94 |  |

## SUGGESTED LAND PATTERN



SHENZHEN YIJIN ELECTRONICS CO: LTD TEL: 0755-27876565

18924600166 QQ: 857950243 http://www.vc-tcxo.com

## **SPECIFICATIONS**

Specifications are typical at 25°C unless otherwise noted. Specifications are subject to change without notice.

| Parameters                               | Fundame | ental | Over | tone |
|------------------------------------------|---------|-------|------|------|
| Frequency, (kHz)                         | 32.768  | 100   | 180  | 240  |
| Motional Resistance $R_1(k\Omega)$       | 60      | 19    | 5    | 4    |
| Motional Capacitance C <sub>1</sub> (fF) | 2.2     | 1.0   | 2.0  | 1.5  |
| Quality Factor Q (k)                     | 37      | 80    | 90   | 110  |
| Shunt Capacitance C <sub>0</sub> (pF)    | 1.0     | 0.85  | 1.0  | 0.9  |
| Load Capacitance (pF) <sup>1</sup>       | 9       | 9     | 9    | 9    |
| Turning Point (°C)                       | 20      | 16    | 20   | 25   |

## Standard Calibration Tolerance for 32.768 kHz<sup>2</sup>

| Glass Lid:   | ± 30 ppm  | ± 100 ppm  | ± 1000 ppm  |
|--------------|-----------|------------|-------------|
|              | (0.003%)  | (0.01%)    | (0.1%)      |
| Ceramic Lid: | ± 100 ppm | ± 1000 ppm | ± 10000 ppm |
|              | (0.01%)   | (0.1%)     | (1.0%)      |

Drive Level 0.5 µW MAX

Temperature Coefficient (k) -0.035 ppm/°C<sup>2</sup>

Note: Frequency f at temperature T is related to frequency  $f_0$  at turning point temperature  $T_0$  by:  $\frac{f-f_0}{f_0} = k(T-T_0)^2$ 

Aging, first year 3 ppm

Shock, survival<sup>3</sup> 5,000 g, 0.3 ms, 1/2 sine

Vibration, survival 20 g RMS, 10-2,000 Hz random

Operating Temp. Range -10°C to +70°C (Commercial)

-40°C to +85°C (Industrial) -55°C to +125°C (Military)

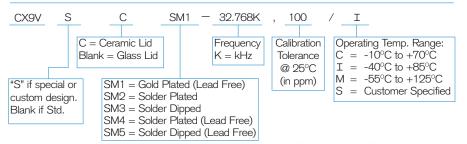
FF00 | 10F00

Storage Temp. Range -55°C to +125°C

Max Process Temperature 260°C for 20 sec.

1. Other values available

2. Tighter tolerances available


3. Higher shock available

## TERMINATIONS

| <u>Designation</u> | <u>Termination</u>        |
|--------------------|---------------------------|
| SM1                | Gold Plated (Lead Free)   |
| SM2                | Solder Plated             |
| SM3                | Solder Dipped             |
| SM4                | Solder Plated (Lead Free) |
| SM5                | Solder Dipped (Lead Free) |
|                    |                           |

Max Process Temperature 260°C for 20 sec.

## **HOW TO ORDER CX9VSM CRYSTALS**



## TYPICAL APPLICATION FOR A PIERCE OSCILLATOR

The CX9 family of surface mount crystals are ideal for small, high density, battery operated portable products. The CX9 crystal designed in a Pierce oscillator (single inverter) circuit provides very low current consumption and high stability. A conventional CMOS Pierce oscillator circuit is shown below. The crystal is effectively inductive and in a Plnetwork circuit with  $C_{\rm D}$  and  $C_{\rm G}$  provides the additional phase shift necessary to sustain oscillation. The oscillation frequency ( $f_{\rm O}$ ) is 50 to 150 ppm above the crystal's series resonant frequency ( $f_{\rm S}$ ).

## **Drive Level**

 $R_A$  is used to limit the crystal's drive level by forming a voltage divider between  $R_A$  and  $C_D$ .  $R_A$  also stabilizes the oscillator against changes in the amplifiers output resistance ( $R_0$ ).  $R_A$  should be increased for higher voltage operation.

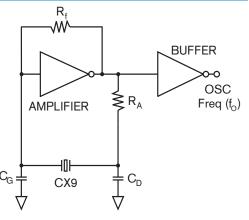
## **Load Capacitance**

The CX9 crystal calibration tolerance is influenced by the effective circuit capacitances, specified as the load capacitance  $(C_1)$ .  $C_1$  is approximately equal to:

$$C_{L} = \frac{C_{D} \times C_{G}}{C_{D} + C_{G}} + C_{S}$$
 (1)

NOTE:  $C_D$  and  $C_G$  include stray layout to ground and  $C_S$  is the stray shunt capacitance between the crystal terminal. In practice, the effective value of  $C_L$  will be less than that calculated from  $C_D$ ,  $C_G$  and  $C_S$  values because of the effect of the amplifier output resistance.  $C_S$  should be minimized.

The oscillation frequency  $(f_0)$  is approximately equal to:


$$f_0 = f_S \left[ 1 + \frac{C_1}{2(C_0 + C_1)} \right]$$
 (2)

\//here

 $f_S$  = Series resonant frequency of the crystal

 $C_1$  = Motional Capacitance  $C_0$  = Shunt Capacitance

# CONVENTIONAL CMOS PIERCE OSCILLATOR CIRCUIT



## **PACKAGING OPTIONS**

Tray Pack or 16mm tape, 7" or 13" reels (Reference tape and reel data sheet 10109)

SHENZHEN YIJIN ELECTRONICS CO: LTD TEL: 0755-27876565

18924600166 QQ: 857950243 http://www.vc-tcxo.com