

CX4 CRYSTAL

Fundamental Mode: 600 kHz to 1.4 MHz Overtone: 1.8432 MHz - 2.5 MHz Ultra-Miniature Low Profile

Surface Mount Quartz Crystal

DESCRIPTION

STATEK's CX4 quartz crystals are hermetically sealed in an ultra-miniature low profile surface mount ceramic package. This high quality quartz resonator forms the basis of a stable oscillator.

FEATURES

- Designed for low power applications in this frequency range
- Smallest available package in this frequency range
- Hermetically sealed ceramic package
- Excellent aging characteristics
- Full military testing to MIL-PRF-3098 available
- Designed and manufactured in the USA

APPLICATIONS

Medical

10

Pacemaker, defibrillator and hearing aid

Industrial, Computer & Communications

- PCMCIA (FAX, Modem and LAN)
- Smart Card

Military & Aerospace

- Airborne hybrid computer
- Low power system clock
- Hybrid multi-chip modules

EQUIVALENT CIRCUIT

actual size

side view

PACKAGE DIMENSIONS

	TYP.		MAX.		
DIM	inches	mm	inches	mm	
А	0.197	5.00	0.210	5.33	
В	0.072	1.83	0.085	2.16	
С	-	-	see below		
D	0.036	0.91	0.046	1.16	
E	0.020	0.51	-	-	
F	0.025	0.64	-	-	
DIM "C"	GLASS LID		CERAMIC LID		
MAX	inches	mm	inches	mm	
SM1	0.045	1.14	0.050	1.27	
SM2/SM4	0.046	1.17	0.051	1.30	
SM3/SM5	0.048	1.22	0.053	1.35	

SUGGESTED LAND PATTERN

0.059 (1.5) 0.092 (2.3) 0.160 (4.0) inches (mm)

SHENZHEN YIJIN ELECTRONICS CO: LTD TEL: 0755-27876565

18924600166 QQ: 857950243

http://www.vc-tcxo.com

SPECIFICATIONS

Specifications are typical at 25°C unless otherwise noted. Specifications are subject to change without notice.

Parameters	Fundamental			Overtone		
Frequency, (Hz)	600 K	1.0 M	1.4 M	1.8432 M	2.4576 M	
Motional Resistance, $R_1\left(\Omega ight)$	300	400	600	500	1000	
Motional Resistance, R ₁ MAX			ЗКS	2		
Motional Capacitance, C1 (fF)	3.5	2.0	1.3	3.5	1.5	
Quality Factor, Q (k)	250	200	150	80	45	
Shunt Capacitance, C ₀ (pF)	1.0	0.8	0.7	1.0	0.8	
Standard Calibration	± 50	0 ppm	(±0.0	05%)		
Tolerance ¹	± 10	00 ppr	n (±0.	.1%)		
	± 10	000 pj	om (<u>+</u>	1.0%)		
Drive Level	ЗμМ	/ MAX	,			
Load Capacitance, C_{L}^{2}	7pF					
Turning Point, T ₀ ²	35°C					
Temperature Coefficient, k	-0.035 ppm/°C² TYP					
Note: Frequency f at temperature T is related to frequency f_0 at turning point temperature T_0 by: $\frac{f-f_0}{c} = k(T-T_0)^2$						

	1 ⁰				
Functional Mode	Extensional				
Aging, first year	5ppm MAX				
Shock, survival	1500 g, 0.3 ms, $1/_2$ sine				
Vibration, survival	20 g RMS, 10-2,000 Hz random				
Operating Temp. Range	-10°C to +70°C (Commercial) -40°C to +85°C (Industrial) -55°C to +125°C (Military)				
Storage Temp. Range	-55°C to +125°C				

Max Process Temperature 260°C for 20 sec. 1. Tighter tolerances available 2. Other values available NOTE: All values subject to change without notice.

TERMINATIONS

<u>Designation</u>	Termination
SM1	Gold Plated
SM2	Solder Plated
SM3	Solder Dipped
SM4	Solder Plated (Lead Free)
SM5	Solder Dipped (Lead Free)

PACKAGING OPTIONS

CX4 - Tray Pack

- Tape and Reel

(Reference tape and reel data sheet 10109)

FOR A PIERCE OSCILLATOR

The CX4 family of surface mount crystals are ideal for small, high density, battery operated portable products. The CX4 crystal designed in a Pierce oscillator (single inverter) circuit provides very low current consumption and high stability. A conventional CMOS Pierce oscillator circuit is shown below. The crystal is effectively inductive and in a PI-network circuit with C_D and C_G provides the additional phase shift necessary to sustain oscillation. The oscillation frequency (f_0) is 50 to 250 ppm above the crystal's series resonant frequency (f_S).

Drive Level

 R_A is used to limit the crystal's drive level by forming a voltage divider between R_A and $C_D.\ R_A$ also stabilizes the oscillator against changes in the amplifiers output resistance (R_0). R_A should be increased for higher voltage operation.

Load Capacitance

The CX4 crystal calibration tolerance is influenced by the effective circuit capacitances, specified as the load capacitance (C_L). C_L is approximately equal to:

$$C_{L} = \frac{C_{D} \times C_{G}}{+} C_{S}$$

NOTE: C_D and C_G include stray layout to ground and C_S is the stray shunt capacitance between the crystal terminal. In practice, the effective value of C_L will be less than that calculated from C_D , C_G and C_S values because of the effect of the amplifier output resistance. C_S should be minimized.

The oscillation frequency (f_0) is approximately equal to:

$$f_0 = f_S \left[1 + \frac{C_1}{2(C_0 + C_L)} \right]$$
 (2)

Where

 f_{S} = Series resonant frequency of the crystal

 C_1 = Motional Capacitance

 C_0 = Shunt Capacitance

CONVENTIONAL CMOS PIERCE OSCILLATOR CIRCUIT

SHENZHEN YIJIN ELECTRONICS CO: LTD TEL: 0755-27876565

18924600166 QQ: 857950243 http://www.vc-tcxo.com